

WJEC (Eduqas) Chemistry A-level

SP C2.3b - Study of an 'lodine Clock' Reaction

Methods and images taken from the WJEC practical handbook

This work by PMT Education is licensed under CC BY-NC-ND 4.0

SP C2.3b - Study of an 'lodine Clock' Reaction

Aim

To study the kinetics of the oxidation of iodide ions by hydrogen peroxide in acid solution.

Apparatus and Chemicals

- Deionised water
- Stopwatch
- 4 x 10 cm³ measuring cylinders
- 25 cm³ bulb/volumetric pipette with safety filler
- 50 cm³ burette and funnel
- · Burette clamp and stand
- 5 x 250 cm³ conical flasks
- 0.1 mol dm⁻³ H₂O₂ solution
- 1.0 mol dm⁻³ H₂SO₄ solution
- 0.1 mol dm⁻³ KI solution
- 0.005 mol dm⁻³ Na₂S₂O₃
- Starch solution

Safety Considerations

 \bigstar 1.0 mol dm⁻³ H₂SO₄ solution - irritant

Planning

1. Decide what volumes of H₂O₂ solution and deionised water you will mix together to get at least **5 different concentrations** of H₂O₂. The total volume must not exceed 5 cm³.

www.pmt.education

Method

- 1. In separate conical flasks, make up the **solutions** according to the table below. Do not add the hydrogen peroxide yet.
- 2. Add 1 cm³ starch solution to each flask and mix thoroughly.
- 3. Rapidly add the hydrogen peroxide to flask 1, starting the **stopwatch** immediately after this addition.
- 4. **Swirl** to mix the reaction mixture thoroughly.
- 5. Stop timing when the solution turns blue-black and record the time.
- 6. Repeat the experiment for flasks 2-5.

Flask	Volume H₂SO₄ (cm³)	Volume Na ₂ S ₂ O ₃ (cm ³)	Volume KI (cm³)	Volume H ₂ O (cm ³)	Volume H ₂ O ₂ (cm ³)
1	10	10	25		
2	10	10	25		
3	10	10	25		
4	10	10	25		
5	10	10	25		

